
Putting the Sec
in DevSecOps

www.guardrails.io

Development and security are like chalk and cheese

Why security scanning tools could never replace Shift-left

Data protection and application security are long-standing concerns

AppSec desperately needed a viable, simple, and proven solution

How e�ective is the GuardRails solution?

How does GuardRails benefit your organization?

What makes GuardRails di�erent?

3

3

3

4

6

7

7

8

9

10

11

12

Contents

AppSec’s Achille’s Heel

The GuardRails 3-step simple AppSec solution

Frequently Asked Questions

Next steps

Bibliography and References

Development and security are like chalk and cheese

Why security scanning tools could never replace Shift-left

Data protection and application security are long-standing concerns

AppSec desperately needed a viable, simple, and proven solution

How e�ective is the GuardRails solution?

How does GuardRails benefit your organization?

What makes GuardRails di�erent?

“By 2023, over 500 million
digital apps and services will be
developed and deployed using
cloud-native approaches – the
same number of apps
developed in the last 40
years…”

Yet over 50% of organizations still do not scan their apps,
and 66% of organizations that su�er a data breach will not
survive. For those that do, expect a loss of market share.
Indeed, over a 3-year period, the average share price of 34
NYSE listed companies, each of whom leaked at least 1
million customer records when hacked, was down by
-15.6%[2]. However, given that between 23% and 53% of
customers will jump ship due to a loss of trust, other
long-term consequences, such as reputational damage
and loss of competitive advantage, remain unknown.

Unfortunately, those organizations still clinging to old,
inadequate, and risky security measures are playing
Russian Roulette. Their DevOps has been streamlined and
working well for some years. However, they still haven’t
achieved Shift-left—integrating security testing throughout
their entire Software Development Life Cycle (SDLC)—and,
consequently, are way short of attaining DevSecOps.
Unfortunately, time is running out, and that DevOps must
become DevSecOps is no longer optional. Any security
practitioner knows that security must become integral to
their business, that their entire security approach must
change, and that it must happen sooner rather than later.
With threats…

With DevSecOps, the old saying, “If it’s worth doing, it’s worth doing well,” springs to mind. As discussed in the How to build
a DevSecOps pipeline white paper, to be successful, DevSecOps must be approached diligently, carefully planned, and
implemented correctly. Unfortunately, all this takes time, and you will be vulnerable if you lack e�ective Application
Security (AppSec) throughout.

Doing nothing is non-viable, and there are typically two approaches. First, you can approach DevSecOps diligently, plan
carefully, take it slowly, and hope and pray that attackers are busy elsewhere while you get your house in order. Second,
and ever conscious of the urgency, you can cut corners and rush the implementation. We wouldn’t advise the latter, as the
lack of diligence results in hidden security vulnerabilities that only come to light when exposed by attackers (and by then,
it’s too late). Your AppSec needs to be in place, and you must be secure from the outset. Unfortunately, there has never been
an easy, quick, or e�ective way to implement security into DevOps. Until now.

Today, as we will show in this Putting the Sec In DevSecOps white paper, you can have a fully-fledged DevSecOps pipeline
that covers all current and future repositories installed and working within seconds. A pipeline that gives you that
much-needed peace of mind and breathing space to concentrate on planning, testing, and implementing the rest of
DevSecOps. But that’s not all. This solution delivers other significant benefits, including eliminating your security bottleneck
and increasing your speed to market, allowing you to ship better, more feature-rich, and more secure products faster, and
reducing both application risk and overall operating and engineering costs.

“…organizations
need to plan
according to the
mindset of, ‘It’s
going to happen
to us; it’s just a
matter of when.’ ”

[1]

2

[3]

AppSec’s Achille’s Heel
No finger-pointing or blame game is attached to calling
out the elephant in the room, but 95% of vulnerabilities
are inadvertently introduced in the development phase.
Despite being completely unintentional, the fact remains
that they’re there, and they’re causing a whole host of
problems. In an ideal world, we could eliminate
vulnerabilities in the development phase at the source.
Eliminating them here would help us create better and
more secure software faster, and eradicate most of, if not
all, our AppSec vulnerability-related issues in an instant.

Unfortunately, this vulnerability problem isn’t new:
reducing or eliminating vulnerabilities has always been
problematic in software development and AppSec.
Developers don’t like security training, deem it out of their
remit, and are bored by it (most of them, that is). Yet,
simple logic would dictate that those who create the

problem should own and fix it. Ironically, by the time
the software gets to the security team’s end of the
SDLC, the vulnerabilities now create the bottleneck.
Suddenly, it’s security’s responsibility to fix the
bottleneck, and they su�er the inevitable backlash in
the holdup. But security engineers aren’t developers,
and… we find ourselves in a Catch-22 situation.

Besides, when security does pass the vulnerabilities
back to the dev team to fix, devs are engaged
elsewhere on other projects and no longer have the
time. The clear answer to this problem has to be to get
developers to own their mistakes, remediate the errors
as they appear, and prevent them from committing
vulnerable code. Do that, and watch your problems
evaporate. Unfortunately, this has never happened.

Development and security are
like chalk and cheese

At opposite ends of the lifecycle, development and
security teams are poles apart in terms of their actual
location, approach, skillsets, and mindsets. As speed and
security are trade-o�s, every business's challenge is
finding the right balance. One main goal of Shift-left was
to resolve this very issue: Move security testing closer to
development, get them talking and working together,
and everything will move much faster and be more
secure. Unfortunately, for the most part, Shift-left failed
because organizations and their existing monolithic apps
were too inflexible. Consequently, though a great idea in
principle, this proved a big flaw in the Shift-left idea.

Why security scanning tools
could never replace Shift-left

Instead, organizations shifted security scanning tools left.
Unfortunately, this went against their fundamental
design. Security scanning tools were designed for security
testing near the end of the SDLC, when the app was
almost ready for release, and not for the fast-paced,
constantly changing development stage at the start of
the lifecycle. Dev teams code fast, need to test frequently,
get immediate feedback, and then rinse and repeat. In
contrast, security scans are notoriously slow (scans often
take several hours and more to run). Given this lack of
speed, deploying the tools to work in a fast-paced,
constantly-changing environment like development was
wishful thinking for two main reasons.

First, as briefly mentioned, developers are not security
trained, so the security reports created were of little use
(devs don’t do pdfs!). Second, expecting devs to run these
security tests every time they commit code and then sit
there twiddling their thumbs while waiting for the results
was a non-starter.

Tools need to be seamless, fast,
and accurate
To be adopted, tools need to make the developer’s life easier.
Tools must work, be fast, accurate, and seamlessly integrate
with and complement the developer’s workflow. Anything else
and the solution won’t ever work, and the tools won’t ever get
used. Regrettably, security scanning tools failed in multiple
areas, and all shifting these tools left did was garner an
illusion that security had moved closer to development.
Unfortunately, given no viable alternative, security scanning
tools became the de facto Shift-left replacement.

Tools must help, not hinder
software development

Being slow was one thing, but security scanning tools
overwhelming security teams with noise was another. Yes,
comprehensive reports do have their place. But you have to
question the validity of serving up a 5,000-page pdf security
report that 1) takes hours to create, 2) is riddled with false
positives, false negatives (and other noise), 3) is written for
security teams and not developers, and 4) is then given to a
team that lacks the adequate resources to cope with even a
fraction of what the report contains. How a 1, 2, or even 5+
person security team could hope to triage and make sense of
a 5,000-page pdf report is anyone’s guess.

Point solution tools are too
unwieldy

Furthermore, most security scanning tools are point
solutions. To cover all bases, organizations would need to
deploy multiple tools. That many of these tools proved
expensive and complex to set up and maintain goes with the
territory. Still, because they rarely integrated with other tools,
it added to the security team’s burden. (Who among us hasn’t
experienced the confusing hassle and aggravation of
managing multiple devices, dashboards, and programs?
Consolidating all into one easy-to-see and manage
dashboard would quickly remove the complexity and
di�culty and save time.) But for already overwhelmed
security teams moving ever closer to alert fatigue, all point
solution tools did was squander more time, increase the risk
of human error, and move them closer to burnout. Moreover,
security scanning tools also failed to address organizations'
long-standing data protection and AppSec concerns.

Data protection and application security are long-standing concerns

“Almost 80% believe their organization is vulnerable
to multi-tiered cyber attacks that can impact the

entire application stack in the next 12 months, with
48% noting that an expanded attack surface has

posed more challenges.” [5]

4

Again, stats show that 2/3rds of organizations that su�er a
data breach do not survive. When you also consider that
cybercrime is up by 600%, it’s hardly surprising that these are
major concerns.

Unfortunately, where data protection and AppSec are
concerned, it’s like putting the cart before the horse: you need
AppSec to protect your data (and need DevSecOps for both
going forward). As we’ll come onto shortly, it’s most definitely
possible to buy AppSec, but...

“You can’t just buy
DevSecOps.” [6]

Nonetheless, remediating vulnerabilities is the key to turning
your AppSec fortunes around. But the question of why
organizations struggle to remediate vulnerabilities remains.

Why do organizations struggle to remediate vulnerabilities?

In addition to what we’ve already covered, other major problems with remediating vulnerabilities and their e�ects include:

Remediating vulnerabilities is by nature complex and slow
Once the vulnerability is committed to the lifecycle, discovering the vulnerability later only adds to its complexity
and the number of resources available at the time to resolve it.

A lack of experienced resources can lead to an inability to patch software quickly
Vulnerable software can lead to disastrous consequences, including system downtime, exposing you to
unexpected compliance issues, and increasing operational risk.

The cost to fix vulnerabilities increases throughout the lifecycle
The later the discovery, the greater the number of resources needed, and the greater the overall cost to fix it (up
to 640x more[7]).

A di�culty integrating security into the development process
Due to various factors, including a lack of available expertise, having siloed teams (and a lack of communication
and collaboration between dev and sec), as well as a lack of tools and resources, etc.

Tool sprawl and technology overload
As already discussed, this can cause issues such as complexity and compatibility issues, time- and
resource-wasting, increasing the chance of alert fatigue, weakening your overall security posture by creating
unseen security gaps, etc.

A lack of development resources
When projects are complete, developers usually move on to the next one. Subsequently, discovering a
vulnerability much later means the original developers are engaged elsewhere and have zero availability to help.
Problems include unexpected delays, impact on other systems and operations, increased vulnerability backlogs,
and the risk of non-compliance.

A poor developer-to-security engineer ratio
Often 100:1 or more, when large lists of vulnerabilities are involved, remediating and clearing the security
bottleneck is both di�cult and unenviable.

A lack of automation
Manually monitoring multiple tools and performing security tasks and testing is time-consuming,
energy-draining, and always at risk of nudging teams closer to alert fatigue. A lack of automation slows response
times, increases the chances of human error, and elevates overall business risk.

Developers are not security trained
Many do not deem security their responsibility or even within their remit. Trying to train them in security has
always been an impossible task.

•

•

•

•

•

•

•

•

•

5

Other key concerns

Other concerns organizations voiced include protecting against
malware and the escalating number of vulnerabilities, threats, and
breaches. Sadly, many organizations report that they are ill-equipped
to deal with these security concerns highlighting

A lack of skilled personnel.
A low-security awareness among both employees and
management.
A lack of security budget.
Poor inter-departmental communication and collaboration.
An overall lack of management support.[7]

•
•

•
•
•

Shift-left failed and, by their very design, security scanning tools,
could never hope to meet the needs of today’s fast-paced software
development world. When you also factor in organizations’
ill-preparedness and that no viable security option was ever on the
horizon, it’s hardly surprising that the future outlook for AppSec has
been bleak.

AppSec desperately
needed a viable, simple,
and proven solution
It was 2017. Having just secured one banking app for a global
banking institution, Stefan Streichsbier, GuardRails’ CTO, and his
team threw a long-awaited party to celebrate. Party hats and
balloons galore, it was during the second lap on the
conga-around-the-punch-bowl dance when the realization hit
that it’d taken almost 2-years to secure that one single app.

Admittedly, that particular project’s deployment speed was
normal for the time but, as celebratory as that event was,
unfortunately, continuing with that same trajectory, it’d be around
the year 2083 before they secured the bank’s 31+ other untouched
and insecure apps (give or take the odd leap year or 2).

“Yes, you’ve secured the crown jewels, but how will you secure the rest?

From there, I looked at the existing tools, but none were fit for purpose.
Then, I decided to take my own approach and make something that

resonates and works for developers… “
Stefan Streichsbier | GuardRails CTO and co-founder

Fortunately, that was a clear indicator that AppSec needed a new and much simpler solution. Today, industry changes and
global events have reinforced that very fact. For any AppSec solution to be universally accepted and adopted, it had to be
automated, fast, easy to use, seamless with, and complement, the developer’s workflow. Above all, the solution had to be
simple and e�ective.

6

The GuardRails 3-step simple AppSec solution
DevSecOps is primarily about people, processes, and technology. But e�ective DevSecOps is automated, and that means
selecting the right tools to support how you do business. GuardRails is such a tool. To deliver what Shift-left couldn’t, the
solution needed to be simple.

Our solution comprises 3-steps:

Scan commits for code changes
and vulnerabilities – This immediately identifies any vulnerabilities in the code and prevents the
developer from committing the source code.

Immediately flag the vulnerability and notify the developer – The vulnerability
is automatically assigned to the developer to fix, and they are notified immediately.

Simultaneously provide detailed, context-specific remediation advice in
the notification to aid the developer in fixing the vulnerability – Of course, if
the developer knows how to remediate the vulnerability, they can safely ignore the advice and
immediately fix it. But, if they don’t know how to fix it, a direct link to the help material aids them in
self-educating and fixing the problem quickly.

1

2

3

Ultimately, the GuardRails system ensures that developers cannot successfully commit vulnerable code. Because this
occurs seamlessly within the developer’s workflow, they can immediately fix the vulnerability with minimal e�ort and
without losing focus.

In its barest form, that’s how GuardRails does it.

(Too simple? We know you’ll have questions about the above, so we’ve included an FAQ section on page 10.) However, one
burning question we know you’ll have is:

How e�ective is the GuardRails solution?
Though we could wax lyrical about how good the GuardRails solution is, that one’s best coming from others:

“Within 6 months of using GuardRails, our pen test findings have
been reduced by 50%.”
Stepanus Mangunsong, Bank Raya

"Now with GuardRails, the bottleneck has been reduced, making
our management very pleased, allowing us to go to market faster,
allowing my security testers to focus more on the high-level bugs
and vulnerabilities now that the baseline is enforced."
Fabrice Marie, AirAsia

“With GuardRails in place, I can sleep better now because I know
that GuardRails is there to help me ensure compliance with our
DevSecOps process.”
Chiang Kai, VKey

How does GuardRails
benefit your
organization?
GuardRails was built to help developers meet the needs of today’s AppSec.
By integrating security testing into all aspects of development, GuardRails
delivers what Shift-left failed to do. Remediating new vulnerabilities at
source prevents them from proceeding into the rest of the SDLC. (You’ll note
we say new vulnerabilities. If you’re wondering how GuardRails manages
your existing vulnerabilities, we cover this in the FAQs on page 10.)

Remediating vulnerabilities at source delivers significant benefits, including
allowing you to:

Create more secure software
faster and accelerate your
time to market.

Eliminate your security
bottleneck and alleviate the
pressure on your security team
(likely for the first time),
allowing them to focus on
more pressing security issues.

Produce better software with
more and better features
faster.

Reduce engineering costs
through real-time feedback
as critical issues are
introduced, as well as
advising software engineers
on how to fix them.

Slash production costs and
bottlenecks through fewer
holdups and slicker pipelines.

Improve your flexibility and
critical response times and
dramatically reduce the cost
of bug fixes.

Upskill and educate your
developers to improve overall
development e�ciency,
increase morale, and promote
better and more solid results.

Automate all aspects of your
code scanning and application
security, improving e�ciency,
freeing up your teams to focus
on more important matters, and
minimizing the likelihood of
human error.

Automatically protect all
current and future
repositories. This not only
leads to less work for your
security teams but also
provides that essential peace
of mind and breathing space to
focus on implementing the rest
of DevSecOps, and lowers your
Total Cost of Ownership (TCO).

8

What makes GuardRails di�erent?

GuardRails delivers Shift-left right out of the box. In addition to our 3-step simple process, here’s how we do it, what we
provide, and some insights into our approach:

Real-time Source Code Analysis – Improves your developer’s ability to remediate vulnerabilities as they
occur. This correction also helps to mitigate the risk of major vulnerabilities being pushed further into
development and causing more complex and costly problems later on, and reducing or even eliminating
your security bottleneck.

Just-in-Time (JIT) Training – Provides real-time guidance and direction on fixing issues and vulnerabilities.
Tight integration within the developer's workflow eliminates distractions and, by including direct links to
topic-specific training, instantly removes the developer’s long-standing dislike of security. JIT training also
educates and upskills your team to deliver bug-free code much faster.

True Left Vision – GuardRails delivers what Shift-left failed to achieve: True Left. Moving security testing left
and as close to development as possible by embedding security testing throughout your workflows.

Developer Impact and Responsibility – GuardRails provides developers with the tools to not only take
responsibility for and help implement a culture of security within the organization but also to take
ownership of their mistakes, upskill and self-educate, and help build better and more secure software
faster.

Unified Security Platform (a single pane of glass) – As discussed, existing technology is fragmented,
isolated, and di�cult to configure and manage (and often requires dedicated teams.) Moreover, it’s
time-consuming, resource-intensive, and increasingly complex. Combining all components into a fast,
well-tuned, and configurable single pane of glass security dashboard that automates security tooling,
scanning, and CI pipeline management makes the entire approach much simpler, easier, and more
e�ective.

Opinionated Approach to Security – By taking a much more opinionated, simple, logical, and practical
approach, we filter out the noise and report only the essential issues. By alleviating overwhelm and
removing the “Cry wolf” syndrome that has distracted security teams worldwide for years, you finally get
the calm breathing space you need.

Version Control System Integration – GuardRails monitors your entire development environment,
constantly scanning for changes, comparing files, etc. When a change is detected, GuardRails
automatically takes all appropriate actions to maintain your development velocity, keep your devs in their
workflow, and protect your end-to-end security.

Security Tool Orchestration – GuardRails orchestrates and automates over 40 security tools to present the
required information in one customizable, easy-to-use dashboard that takes the pressure o� of everyone.

Security Rules Curation – Smart rules curation examines every single rule of every single tool to determine
whether it qualifies as a security issue. It’s fast, and when it detects a security issue, it flags it automatically
and immediately. That way, in-workflow reports contain only relevant content, are succinct, and your
teams only get notified on important matters.

False Positive Detection – GuardRails' proprietary false positive detection system has an exceptional
accuracy rate, helps eliminate irrelevant security issues and false alerts, and provides a feedback loop to
keep our detection system current, accurate, and safe.

Security Testing Techniques – GuardRails orchestrates and unifies over 40 tools that perform Static
Application Security Testing (SAST), Software Composition Analysis (SCA), Secrets Detection, and
Infrastructure as Code (IaC) to keep you secure from code-to-cloud.

•

•

•

•

•

•

•

•

•

•

•

9

Frequently Asked
Questions
Below are the most common questions. If you have a question that isn’t
covered, please contact us; we’re always happy to help.

Many security tools are slow, so how fast is GuardRails? – GuardRails is very fast. We have built smart scanning
capabilities that scan for new code changes (rather than the entire code base) and only flag/notify new errors. As
such, most scans take only seconds.

How secure is GuardRails? – GuardRails uses GuardRails to secure GuardRails. We are also ISO 27001 and SOC
Type 2 certified.

How accurate are you at finding vulnerabilities? – Very accurate. When a developer commits code, GuardRails
immediately scans for code changes. On detection, we flag the vulnerability and notify the developer in real time
and within their workflow. We then record this information in the Version Control System (VCS), where it can be
accessed and reused for review/training purposes, etc.

How easy is GuardRails to set up and use? – GuardRails installs in seconds and works out-of-the-box with no
additional configuration required. (Though GuardRails is fully customisable.)

What do you mean by a single-pane-of-glass? – This is our single consolidated dashboard that combines all
components from our security engines and languages into one place. This includes threat overview, opened
versus fixed vulnerabilities, most common vulnerabilities, vulnerabilities by language, etc.

Is the onboarding/training complex and time-consuming? – No, it’s highly intuitive and educational by design.
Because we provide in-workflow, real-time, context-specific help, we overcome and eliminate the need for
developers to sit through hour-long+ (boring, to them) mandatory security training videos. Moreover, because we
have deep integration with Bitbucket/GitLab/GitHub, this allows us to wrap security around what is already
familiar VCS functionality.

Can you elaborate on your context and environmentally specific education and training? – By providing
context, language, and environmentally-specific help, we empower developers to [finally] take ownership of and
fix their own errors. Feedback and results show this completely overcomes the long-standing developer resistance
to security training, helps them become better developers faster, and solves that ‘forever’ problem mentioned
earlier. (The results clearly show that it’s not just developers who love GuardRails; security engineers do, too!)

How di�cult/complex is GuardRails to set up and maintain? – Neither. It’s easy and simple and takes only
seconds. Once installed, GuardRails rapidly scans your repositories, immediately flags any existing
vulnerabilities, and then we’re ready to go.

How scalable is GuardRails? – Very. GuardRails integrates with all modern VCS, automatically scans all new
repositories, and scales automatically and in parallel with you.

What languages are supported? – Supported languages include Apex, Dotnet, Python, Ruby, PHP, JavaScript,
TypeScript, Rust, Kubernetes, Go, Solidity, Java, Elixir, Terraform, and C/C++.

How customizable is GuardRails? – Because GuardRails takes an opinionated approach to security, it works for
most use cases out-of-the-box after installation. Almost every setting in GuardRails can be completely
customized, whether adding custom engine rules or tweaking the platform settings. Indeed, if you have specific
needs, such as we see with in-house developed apps, you can even create your own custom scanning engines.We
provide full documentation but are always happy to help.

We know we have many existing vulnerabilities; can you explain how GuardRails deals with them? – We use
the Stop the Bleeding approach (you may remember this approach as one of First Aid's priorities: to prevent the
patient’s condition from worsening). As our CEO, Andrew Duck, succinctly put it,

“Once installed, we may detect 1,000 existing
vulnerabilities, but GuardRails will ensure

you never get to 1,001.”

10

•

•

•

•

•

•

•

•

•

•

•

•

Next steps
If what you’ve read in this paper interests you, the next step would be to see GuardRails in action. We have a short, live,
power-packed demo that only takes about 15 minutes. First, you’ll see how quick and easy installing GuardRails in
real-time is. Second, you’ll see how easy and intuitive GuardRails is to use. Third, you’ll see why GuardRails is not only
turning the AppSec industry on its head but also finally Putting the Sec in DevSecOps.

Book a Demo

11

https://www.guardrails.io/book-a-demo/

Bibliography
and References
[1] Fortinet, "IDC FutureScape 2023," Fortinet, 2023. [Online]. Available: https://www.idc.com/events/futurescape.
[Accessed 25 January 2023].

[2] Bischo�, P, “How data breaches a�ect stock market share prices” Comparitech, 9 February 2021. [Online] Available:
”https://www.comparitech.com/blog/information-security/data-breach-share-price-analysis/. [Accessed 13 February
2023]

[3] R. Tarun, "Top Cybersecurity Challenges for CISOs to Address in 2023," Fortinet, 15 December 2022. [Online].
Available: https://www.fortinet.com/blog/ciso-collective/top-cybersecurity-challenges-for-cisos-to-address-in-2023.
[Accessed 25 January 2023].

[4] C. Osborne, "The more cybersecurity tools an enterprise deploys, the less e�ective their defense is," ZDNet, 30 June
2020. [Online]. Available:
https://www.zdnet.com/article/the-more-cybersecurity-tools-an-enterprise-deploys-the-less-e�ective-their-defense-is/.
[Accessed 20 January 2023].

[5] E. Yu, "Firms fear software stack breach as attack surface widens," ZDNet, 1 February 2023. [Online]. Available:
https://www.zdnet.com/article/firms-fear-software-stack-breach-as-attack-surface-widens/. [Accessed 2 February
2023].

[6] W. Kelly, "DevSecOps: 5 tips for seeding a culture transformation," RedHat, 18 August 2022. [Online]. Available:
https://www.redhat.com/architect/devsecops-culture. [Accessed 24 August 2022].

[7] C. Jones, Applied Software Measurement: Global Analysis of Productivity and Quality, 3 ed., New York: McGraw Hill,
2008, p. 697.

[8] Tripwire, "Application Security Report 2022: Key Trends and Challenges," Tripwire, 8 August 2022. [Online]. Available:
https://www.tripwire.com/state-of-security/application-security-report-2022-key-trends-and-challenges. [Accessed 20
January 2023].

[9] PurpleSec, "Cyber Security Statistics The Ultimate List Of Stats Data, & Trends For 2022," PurpleSec, 17 October 2022.
[Online]. Available: https://purplesec.us/resources/cyber-security-statistics/#Cybercrime. [Accessed 20 January 2023].

[10] Privitar, "New Privitar Survey Reveals Business Opportunity to Build Consumer Loyalty Through Data Privacy," Privitar,
26 August 2020. [Online]. Available:
https://www.privitar.com/press-releases/new-privitar-survey-reveals-business-opportunity-to-build-consumer-loyalty-th
rough-data-privacy/. [Accessed 27 July 2021].

[11] C. Gri�ths, "The Latest 2023 Cyber Crime Statistics," Aag, 6 January 2023. [Online]. Available:
https://aag-it.com/the-latest-cyber-crime-statistics/. [Accessed 20 January 2023].

[12] M. Hales, "8 big DevSecOps challenges and how to overcome them," Adapatavist, 21 December 2021. [Online].
Available: https://www.adaptavist.com/blog/8-common-devsecops-challenges-and-how-to-overcome-them.
[Accessed 25 January 2023].

[13] M. Nawale, "The Top Challenges Faced by Organizations Implementing DevSecOps," ZScaler, 18 May 2022.
[Online]. Available:
https://www.zscaler.com/blogs/product-insights/top-challenges-faced-organizations-implementing-devsecops.
[Accessed 23 January 2023].

12

https://www.guardrails.io/book-a-demo/

GuardRails is an end-to-end security platform that empowers developers to find, fix, and prevent
vulnerabilities in their web and mobile applications.

Trusted by hundreds of teams around the world to build safer apps, we easily integrate into the developers’
workflow, quietly scan as they code, and show how to fix security issues on the spot via Just-in-Time training.
We keep the noise low and only report high-impact vulnerabilities that are relevant to your organization.

GuardRails helps you shift security everywhere and build a strong DevSecOps pipeline, so you can go faster
to market without risking security.

www.guardrails.io

	Putting the Sec in DevSecOps
	Contents
	AppSec's Achille's Heel
	Development and security are like chalk and cheese
	Why security scanning tools could never replace Shift-left
	Data protection and application security are long-standing concerns
	AppSec desperately needed a viable, simple, and proven solution

	The GuardRails 3-step simple solution
	How effective is the GuardRails solution?
	How does GuardRails benefit your organization?
	What makes GuardRails different?

	Frequently Asked Questions
	Next steps
	Bibliography and References
	Rear cover

